Abstract

Due to its highly in-plane oriented crystal structure, the flexible graphite film (GF) possesses excellent electrochemical corrosion resistance, high planar electrical conductivity, and considerable mechanical strength. In this work, the laser-drilled integrated graphite film (porous-GF, PGF) is unprecedentedly used as a key to fabricate a high-performance high-energy 5 V-class flexible PGF/PGF-LiNi0.5Mn1.5O4 full cell, where the flexible PGF is a self-standing flexible graphite anode for lithium-ion intercalation/deintercalation and a high-voltage resistance cathode current collector. This unique design based on the flexible PGF will endow the future flexible batteries with excellent characteristics of thin, lightweight, simple fabrication, and high energy. More encouragingly, unlike previously reported flexible electrodes using carbon nanomaterials as the nonmetal current collector, the mass production and processability of the flexible GF and PGF are feasible with the aid of commercially available roll-to-roll laser drilling technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.