Abstract

Chronic lymphocytic leukemia (CLL) and other B-cell lymphoproliferative disorders (LPDs) show clear evidence of familial aggregation, but the inherited basis is largely unknown. To identify a susceptibility gene for CLL, we conducted a genomewide linkage analysis of 115 pedigrees, using a high-density single-nucleotide polymorphism (SNP) array containing 11,560 markers. Multipoint linkage analyses were undertaken using both nonparametric (model-free) and parametric (model-based) methods. Our results confirm that the presence of high linkage disequilibrium (LD) between SNP markers can lead to inflated nonparametric linkage (NPL) and LOD scores. After the removal of high-LD SNPs, we obtained a maximum NPL of 3.14 (P=.0008) on chromosome 11p11. The same genomic position also yielded the highest multipoint heterogeneity LOD (HLOD) score under both dominant (HLOD 1.95) and recessive (HLOD 2.78) models. In addition, four other chromosomal positions (5q22-23, 6p22, 10q25, and 14q32) displayed HLOD scores >1.15 (which corresponds to a nominal P value <.01). None of the regions coincided with areas of common chromosomal abnormalities frequently observed for CLL. These findings strengthen the argument for an inherited predisposition to CLL and related B-cell LPDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.