Abstract

Silicon carbide (SiC) MOSFET power modules are being used for high power applications because of their superior thermal characteristics and high blocking voltage capabilities over traditional silicon power modules. This paper explores modeling the thermal process of a SiC MOSFET power module through a high-order finite element analysis (FEA) based thermal model and then reducing the order of the FEA thermal model using a Krylov subspace method. The low-order thermal model has a significantly reduced computation cost compared to the FEA model while preserving the accuracy of the model. The proposed method is applied to generate low-order thermal models for a SiC MOSFET, which are validated by computer simulations with respect to the FEA thermal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call