Abstract

HypothesisA facile, dialysis-based synthesis of stable near infrared (nIR) absorbing plasmonic gold nanoparticles (λmax=650–1000nm) will increase the yield of nIR particles and reduce the amount of gold colloid contaminant in the product mixture. ExperimentsChloroauric acid and sodium thiosulfate were reacted using a dialysis membrane as a reaction vessel. Product yield and composition was determined and compared to traditional synthesis methods. The product particle distribution, yield, and partitioning of gold between dispersed product and membrane-adsorbed gold were determined. FindingsThe synthesis results in polydisperse particle suspensions comprised of 70% spheroid-like particles, 27% triangular plates, and 3% rod-like structures with a 3% batch-to-batch variation and a prominent nIR absorption band with λmax=650–1000nm. The amount of small gold colloid (λmax=530nm; d<10nm) in the isolated product was reduced by 96% compared to traditional methods. Additionally, 91.1% of the gold starting material is retained in the solution-based nanoparticle mixture while 8.2% is found on the dialysis membrane. The synthesis results in a quality ratio (QR=AbsnIR/Abs530) of 1.7–2.4 (twice that of previous techniques) and 14.3 times greater OD∗ml yield of the nIR-absorbing nanoparticle fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.