Abstract

There is a great need for silicon microelectrodes that can simultaneously monitor the activity of many neurons in the brain. However, one of the existing processes for fabricating silicon microelectrodes-reactive-ion etching in combination with anisotropic KOH etching-breaks down at the wet-etching step for device release. Here we describe a modified wet-etching sidewall-protection technique for the high-yield fabrication of well-defined silicon probe structures, using a Teflon shield and low-pressure chemical vapor deposition (LPCVD) silicon nitride. In the proposed method, a micro-tab holds each individual probe to the central scaffold, allowing uniform anisotropic KOH etching. Using this approach, we obtained a well-defined probe structure without device loss during the wet-etching process. This simple method yielded more accurate fabrication and an improved mechanical profile.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.