Abstract
Potassium ion batteries (PIBs) with high-volumetric energy densities are promising for next-generation low-cost energy storage devices. Metallic bismuth (Bi) with a structure similar to graphite, is a promising anode material for PIBs due to its high theoretical volumetric capacity (3763 mA h cm−3) and relatively low working potential (−2.93 V vs. standard hydrogen electrode). However, it experiences severe capacity decay caused by a huge volume expansion of Bi when alloying with potassium. This study reports a flexible and free-standing Bi nanosheet (BiNS)/reduced graphene oxide composite membrane with designed porosity close to the expansion ratio of BiNS after charging. The controlled pore structure improves the electron and ion transport during cycling, and strengthens the structural stability of the electrode during potassiation and depotassiation, leading to excellent electrochemical performance for potassium-ion storage. In particular, it delivers a high reversible volumetric capacity of 451 mA h cm−3 at the current density of 0.5 A g−1, which is much higher than the previously reported commercial graphite material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.