Abstract
This paper describes the power dissipation analysis and the design of an efficiency-improved high-voltage class-D power amplifier. The amplifier adaptively regulates its switching frequency for optimal power efficiency across the full output power range. This is based on detecting the switching output node voltage level at the turn-on transition of the power switches. Implemented in a 0.14 $\mu$ m SOI BCD process, the amplifier achieves 93% efficiency at 45 W output power, ${>}80\hbox{\%}$ power efficiency down to 4.5 W output power and ${>}49\hbox{\%}$ efficiency down to 0.45 W output power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.