Abstract
Missing tag incidents are common in RFID-enabled supply-chain and warehousing scenarios due to cargo theft and employee error operations, which may lead to serious economic losses or potential safety hazards. On the premise of ensuring the accuracy of missing tag detection, this paper aims to improve the time efficiency in an integrated RFID system. Unlike prior work focusing on detecting missing items from a large number of homogeneous tags that are monitored by a single reader, one integrated RFID system possesses multiple readers to communicate with the heterogeneous tags, which have different categorical attributes. In addition, the prior work required repeating the execution several times to capture the missing tags in assorted categories, which is of low time efficiency. Thus, a protocol called Multi-reader Missing Tag Detection (MMTD) is proposed to capture the missing tag quickly and reliably, which can detect missing tags from different categories in a parallel manner and is much more time-efficient than previous work. MMTD has two major advantages compared to prior work: (i) It leverages the knowledge of the spatial distribution of tags to divide up a difficult detection task into several lightweight tasks, which are shared by multiple readers. (ii) It personalizes the time frame of the reader based on the tag population to optimize the utilization of the communication channel. The final simulation results reveal that MMTD is the best in time-efficiency among the comparison protocols, and MMTD outperforms the other missing tag detection protocols by at least in the Integrated RFID scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.