Abstract

Current method for obtaining microbial colonies still relies on traditional dilution and spreading plate (DSP) procedures, which is labor-intensive, skill-dependent, low-throughput and inevitably causing dilution-to-extinction of rare microorganisms. Herein, we proposed a novel ultrasonic spraying inoculation (USI) method that disperses microbial suspensions into millions of aerosols containing single cells, which lately be deposited freely on a gel plate to achieve high-throughput culturing of colonies. Compared with DSP, USI significantly increased both distributing uniformity and throughput of the colonies on agar plates, improving the minimal colony-forming abundance of rare Escherichia coli mixed in a lake sample from 1% to 0.01%. Applying this novel USI to a lake sample, 16 cellulose-degrading colonies were screened out among 4766 colonies on an enlarged 150-mm-diameter LB plate. Meanwhile, they could only be occasionally observed when using commonly used DSP procedures. 16S rRNA sequencing further showed that USI increased colony-forming species from 11 (by DSP) to 23, including seven completely undetectable microorganisms in DSP-reared communities. In addition to avoidance of dilution-to-extinction, operation-friendly USI efficiently inoculated microbial samples on the agar plate in a high-throughput and single-cell form, which eliminated masking or out-competition from other species in associated groups, thereby improving rare species cultivability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.