Abstract

ABSTRACT The reliability of adhesive bond strength influences the applicability of structural adhesives in industries. The statistical probability distribution of the strength of adhesive joints is an essential indicator when designing and choosing adhesives. In this study, we experimentally studied the probability distribution of the strength of adhesive joints. The strength data were collected using a novel high-throughput technique consisting of a sample preparation method and shear testing device. Numerous cylindrical butt shear-joint specimens were prepared by mechanical machining and tested using a self-developed shear testing device. The effect of moisture absorption by the adhesive was specifically considered. The probability distribution of the shear strength of the epoxy adhesive joints was characterized using five probability distribution functions: Normal, Lognormal, Exponential, Weibull, and Gamma. Quantile – quantile plots were employed to determine the suitability of each distribution function. The results suggested that the Weibull and Normal distributions were best suited for describing the probability distribution of the strength of the epoxy adhesive joints. The Weibull distribution is particularly suitable for brittle epoxy adhesives. Moisture absorption reduced both the mean and variance of the shear strength, which might be attributed to the plasticization of the adhesives. The high-throughput method proposed in this study significantly improved the efficiency of testing adhesive joints. It not only contributes to the study of the strength distributions of adhesive joints but also helps to shorten the research and development cycle of new adhesives by facilitating rapid strength evaluation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call