Abstract

Little is known about how specific genes influence taste function in mammals. One of the most promising ways to fill this void is to screen the progeny of chemically mutagenized (or genetically altered) mice for aberrant taste phenotypes and then identify the mutated gene(s) that is associated with each taste anomaly. To exploit this approach, a high-throughput and robust screening procedure is needed. We have attempted to meet this demand by developing an automated procedure that assesses taste responsiveness of individual mice to palatable and unpalatable taste stimuli. We focused on three taste stimuli (quinine hydrochloride, QHCl; sodium chloride, NaCl; and sucrose) and one mouse strain (C57BL/6). We used a commercially available gustometer system that both monitors the licking responses of mice and controls the presentation of each taste stimulus during successive 5 s trials. We describe a screening procedure that (after 2 days of simple training) can generate a concentration-response curve for NaCl or sucrose during a single 30 min test session, and for QHCl over three 30 min test sessions. A normative database based on the responses of 98 mice subjected to our screening procedure is also presented. We envision that investigators could use this normative database to assess taste function in the progeny of mutagenized (or genetically altered) mice. Any mouse that deviates significantly-e.g. three standard deviations (SD)-from the mean of the normative database would be flagged as having a potentially interesting mutation. We also developed an additional second screen for identifying mice with oromotor abnormalities. This latter screen is necessary because oromotor problems could lead to false positives or negatives in the screen for taste function, but is also useful for researchers interested in genes influencing oromotor circuitry. Throughout the development of the screening protocol, we sought to balance two conflicting demands: the need to maximize the screen's sensitivity and minimize its duration. This screen represents a significant improvement over the common two-bottle preference test because it assesses taste function more specifically and in a fraction of the time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call