Abstract

BackgroundMost sample preparation methods characteristically involve intensive and repetitive labor, which is inefficient when preparing large numbers of samples from population-scale studies. MethodsThis study presents a robotic system designed to meet the sampling requirements for large population-scale studies. Using this robotic system, we developed and validated a method to simultaneously measure urinary anatabine, anabasine, nicotine and seven major nicotine metabolites: 4-Hydroxy-4-(3-pyridyl)butanoic acid, cotinine-N-oxide, nicotine-N-oxide, trans-3′-hydroxycotinine, norcotinine, cotinine and nornicotine. We analyzed robotically prepared samples using high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometry in positive electrospray ionization mode using scheduled multiple reaction monitoring (sMRM) with a total runtime of 8.5min. ResultsThe optimized procedure was able to deliver linear analyte responses over a broad range of concentrations. Responses of urine-based calibrators delivered coefficients of determination (R2) of >0.995. Sample preparation recovery was generally higher than 80%. The robotic system was able to prepare four 96-well plate (384 urine samples) per day, and the overall method afforded an accuracy range of 92–115%, and an imprecision of <15.0% on average. ConclusionsThe validation results demonstrate that the method is accurate, precise, sensitive, robust, and most significantly labor-saving for sample preparation, making it efficient and practical for routine measurements in large population-scale studies such as the National Health and Nutrition Examination Survey (NHANES) and the Population Assessment of Tobacco and Health (PATH) study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call