Abstract

DNA extraction techniques that employ the reversible binding of DNA to silica via chaotropic salts can deliver high-quality genomic DNA from plant and animal tissues, while avoiding the use of toxic organic solvents. Existing techniques that use this method are either prohibitively expensive, or are applicable to only a restricted set of taxa. Here we describe a cost-effective DNA extraction technique suitable for a wide range of plant and animal taxa that yields microgram quantities of high-molecular-weight genomic DNA at a throughput of 192 samples per day. Our technique is particularly robust for tissue samples that are insoluble or are rapidly discoloured or oxidized in standard DNA extraction buffers. We demonstrate the quality of DNA extracted using this method by applying the amplified fragment length polymorphism technique to plant species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.