Abstract

The ionic conductivity and thermal stability of the electrolyte-separator system is an essential parameter for improving battery performance and safety. The present work addresses the high thermally stable gel polymer electrolyte (GPE) using polyacrylonitrile (PAN) as a polymer membrane and magnesium perchlorate in propylene carbonate (Mg(ClO4)2-PC) as a liquid electrolyte. The PAN based polymer membrane is prepared by electrospinning process which produces a bead free and uniformly distributed nanofibers. The electrospun PAN based GPE is characterized by different physical and electrochemical techniques like X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, ionic conductivity, linear sweep voltammetry, magnesium ion transference number and electrochemical impedance spectroscopy. The ionic conductivity of PAN is 3.28 mS cm−1, compared to that of PP Celgard is 1.97 × 10–4 mS cm−1 at 30 °C. The electrochemical stability of PAN is 4.6 V and also exhibits excellent interfacial stability with magnesium metal. The results showed that the PAN-based GPE has higher ionic conductivity and thermal stability than the polypropylene (PP) Celgard membrane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call