Abstract

Over the last decades, fast response aerodynamic probes have been recognized as a robust measurement technique to provide time-resolved flow field data in turbomachinery environments. Still, most of the existing probe designs are restricted to low temperature applications (<120 °C) either because of sensor temperature range limitations or packaging issues. Measurements in turbomachines also require a small probe size often with a very high bandwidth which are conflicting constraints difficult to satisfy simultaneously. This contribution therefore presents the development of a novel miniature (∅ 2.5 mm ) high temperature single sensor total pressure probe, designed for operation up to 250 °C with a very high bandwidth of 250 kHz. The probe main element is a 1.7 mm diameter commercial piezoresistive transducer placed in a Pitot type arrangement with a flush mounted sensor to provide the highest bandwidth. The details of the probe design are presented as well as the probe calibrations in pressure and in temperature. The effects of using a thermal compensation module or a sense resistor to monitor the temperature drift are described in the context of measurement uncertainty. The probes were characterized in terms of aerodynamic characteristics versus flow angle and Mach number. Shock tube tests have shown a dynamic response of the probe with sensor resonance frequencies well over 300 kHz, with a flat frequency range up to 250 kHz. Two probe prototypes were manufactured and first used in the 3½-stage high speed axial compressor CREATE of the LMFA at École Centrale de Lyon in France. The probes were traversed at each interblade row plane up to temperatures of 180 °C and absolute pressure of 3 bars. The probe was able to resolve the high blade passing frequencies (∼16 kHz) and several harmonics including rotor-stator interaction frequencies up to 200 kHz. Besides the average total pressure distributions from the radial traverses, phase-locked averages and random unsteadiness are presented. The probe spatial and temporal resolutions are discussed in the context of those results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.