Abstract

The current paper presents the design and performance of a high-temperature heat pump (HTHP) integrated in an innovative, sensible, and latent heat storage system. The HTHP has been designed to work between a heat source from 40 to 100 °C and a heat sink above 130 °C. An initial refrigerant analysis has revealed that R-1233zd(E) is the best candidate to meet the required performance and environmental considerations. The first part of this paper deals with the sizing and selection of the main components while discussing the challenges and working limits. A numerical model is also presented and validated. The second part of the paper is dedicated to develop parametric studies and performance maps under different operating conditions. The results show that the current HTHP, at a source temperature of 80 °C, consumes from 3.23 to 9.88 kW by varying the compressor’s speed from 500 to 1500 rpm. Heat production is achieved in the form of latent heat (7.40 to 21.59 kW) and sensible heat (from 6.35 to 17.94 kW). The heating coefficient of performance (COPHTHP) is around 4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.