Abstract

An equation of state (EOS) is developed for salt-water systems in the high temperature range. As an example of the applications, this EOS is parameterized for the calculation of density, immiscibility, and the compositions of coexisting phases in the CaCl 2-H 2O and MgCl 2-H 2O systems from 523 to 973 K and from saturation pressure to 1500 bar. All available volumetric and phase equilibrium measurements of these binaries are well represented by this equation. This EOS is based on a Helmholtz free energy representation constructed from a reference system containing hard-sphere and polar contributions plus an empirical correction. For the temperature and pressure range in this study, the electrolyte solutes are assumed to be associated. The water molecules are modeled as hard spheres with point dipoles and the solute molecules, MgCl 2 and CaCl 2, as hard spheres with point quadrupoles. The free energy of the reference system is calculated from an analytical representation of the Helmholtz free energy of the hard-sphere contributions and perturbative estimates of the electrostatic contributions. The empirical correction used to account for deviations of the reference system predictions from measured data is based on a virial expansion. The formalism allows generalization to aqueous systems containing insoluble gases (CO 2, CH 4), alkali chlorides (NaCl, KCl), and alkaline earth chlorides (CaCl 2, MgCl 2). The program of this model is available as an electronic annex (see EA1 and EA2) and can also be downloaded at: http://www.geochem-model.org/programs.htm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call