Abstract

The integration of inflexible constituents onto pliable substrates is widely acknowledged as the most pragmatic approach for the realization of stretchable electronics. Nevertheless, the assurance of enduring connectivity between rigid electrode components and these compliant substrates poses a formidable quandary. In the scope of our investigation, we proffer a resolution by conceptualizing a PDMS substrate replete with strain isolation partitions, which can generate Young's modulus difference of approximately 30 times. These partitions efficaciously safeguard the steadfast linkage between rigid components and electrodes, even under diverse strain provocations, a stable connection can be maintained even when able to withstand strain exceeding 120 %. Using this substrate, we constructed a visual deformation sensing system based on microcrack type sensors. Compared with traditional flexible substrates (2 % strain), systems based on strain isolation substrates have better tensile stability (10 % strain). This groundbreaking innovation bestows stretchable micro-crack strain-sensing systems the resilience to contend with the potentially formidable rigors of everyday application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.