Abstract

Developing articular cartilage substitutes required a combination of high compressive strength, excellent biocompatibility and low friction. Despite great success in tough hydrogels, this combination was hardly realized. Herein, a high strength, low friction, and biocompatible hydrogel was obtained by freezing-thawing polyvinyl alcohol and chitosan aqueous solutions three times, followed with soaking in sodium alginate aqueous solution. Owing to the synergy of crystalline domains, hydrogen bonds, and ionic interactions, the obtained hydrogel exhibited high strength (maximum compressive strength = 141 MPa). Because of the reversible linkages, the gel was also creep-resistant (recovery efficiency = 93%). Benefitted from the negative carboxyl groups from sodium alginate, the water lubrication layer between the gel and the opposing surface was thickened greatly, resulting in a low coefficient of friction (0.044). The biocompatible materials and green progress led to excellent cell compatibility. All these merits made it an ideal substitute for articular cartilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call