Abstract

This paper describes a low-supply-voltage flip flop circuit design. The advantages of low supply voltage are discussed. Based on an analytical circuit delay model, conventional flip flop operating speed degradation below 1 V supply voltage is analyzed. We then propose a new GaAs static flip flop, called TD-FF (tri-state driver flip-flop), for ultra-low supply voltage GaAs heterojunction FET LSIs. The TD-FF operates at a data rate of 10 Gbps with 18 mW power consumption at 0.8 V supply voltage, which is 1/5 of the minimum value reported for D-FFs so far. We also demonstrate a 1/8 static frequency divider IC using the TD-FF configuration. This IC operates up to 10 GHz with 38 mW at 0.8 V supply voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.