Abstract

We have developed a passive long-wavelength infrared (LWIR) scattering-type scanning near-field optical microscope (s-SNOM) installed in a helium-free mechanically cooled cryostat, which facilitates cooling of an LWIR detector and optical elements to 4.5 K. To reduce mechanical vibration propagation from a compressor unit, we have introduced a metal bellows damper and a helium gas damper. These dampers ensure the performance of the s-SNOM to be free from mechanical vibration. Furthermore, we have introduced a solid immersion lens to improve the confocal microscope performance. To demonstrate the passive s-SNOM capability, we measured thermally excited surface evanescent waves on Au/SiO2 gratings. A near-field signal-to-noise ratio is 4.5 times the improvement with an acquisition time of 1 s/pixel. These improvements have made the passive s-SNOM a more convenient and higher-performance experimental tool with a higher signal-to-noise ratio for a shorter acquisition time of 0.1 s.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call