Abstract

Optical detection is an indispensable part of microfluidic systems for nutrient determination in seawater. Coupling total internal reflection capillaries with microfluidic chips is a practical alternative to increase the optical path length for high-sensitivity and a low detection limit in colorimetric assays, which has not been applied in microfluidic devices for seawater nutrients. Here, we present an online microfluidic system which integrated a total internal reflection capillary made of Teflon AF 2400 for the high-sensitivity detection of nitrite and nitrate in seawater. The off-chip capillary lengthens the optical path without changing the internal flow path of the microfluidic chip, enhancing the sensitivity, reducing the detection limit and widening the dynamic range of the system, which significantly improves the performance of the microfluidic system based on wet-chemistry. The detection limit for nitrite is 0.0150 μM using an external 20 cm capillary and 0.0936 μM using an internal 5 cm absorption cell, providing an over 6-fold improvement. Laboratory analysis of surface seawater samples collected from the South China Sea with this system and a one-month online deployment of an autonomous analyzer developed based on this system at a station revealed correlations between the nitrite and nitrate with tide, salinity and chlorophyll over slight variations and narrow ranges, demonstrating the high-sensitivity of this method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call