Abstract
Despite the significance of membrane proteins (MPs) in biological system is indisputable, their specific natures make them notoriously difficult to be analyzed. Particularly, the widely used Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) prefers analyses of hydrophilic cytosolic proteins and has a limited ionization efficiency towards hydrophobic MPs. Herein, a hydrophobic compound (E)-propyl α-Cyano-4-Hydroxyl Cinnamylate (CHCA-C3), a propyl-esterified derivative of α-cyano-4-hydroxycinnamic acid (CHCA), was applied as a contaminant tolerant matrix for high sensitivity MALDI-MS analyses of MPs. With CHCA-C3, the detection limits of hydrophobic peptides were 10- to 100-fold better than those using CHCA. Furthermore, high quality of spectra could be achieved in the presence of high concentration of chaotropes, salts and detergents, as well as human urinary and serum environment. Also, CHCA-C3 could generate uniform sample distribution even in the presence of contaminants. This high contaminant-resistance was revealed to be ascribed to the enhanced hydrophobicity of CHCA-C3 with a lower affinity towards hydrophilic contaminants. The application of CHCA-C3 is further demonstrated by the analysis of trypsin/CNBr digests of bacteriorhodopsin containing seven transmembrane domains (TMDs), which dramatically increased numbers of identified hydrophobic peptides in TMDs and sequence coverage (∼100%). Besides, a combined method by using CHCA-C3 with fluoride solvent and a patterned paraffin plate was established for analysis of integral MPs. We achieved a low detection limit of 10 fmol for integral bacteriorhodopsin, which could not be detected using traditional matrices such as 3,5-dimethoxy-4-hydroxycinamic acid, 2,5-dihydroxyacetophenone even at sample concentration of 10 pmol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.