Abstract

Timely detection of formaldehyde is pivotal because formaldehyde is slowly released from the indoor decorative materials, jeopardizing our healthy. Herein, a high-response formaldehyde gas sensor based on Ag-ZnO/In2O3 nanofibers was successfully fabricated. Compared with all the control samples, the hybrid exhibits superior sensitivity (0.65 ppm−1), excellent selectivity (≥ 12.5) and durable stability (the deviation value ≤ 3%). Particularly, an ultra-high response value of about 186 towards 100 ppm of formaldehyde at 260 °C was achieved, heading the list of outstanding candidates. Additionally, the limit of detection is as low as 9 ppb. The enhanced gas sensing properties can be mainly attributed to multi-level heterojunctions (n-n heterojunction and Ohmic junction) and the “spill-over” effect of Ag, ultimately increasing the adsorption of gas molecules on the surface of sensing material. This work verifies that proper design of multi-level heterojunctions significantly upgrade the sensing performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.