Abstract

Environmental risk assessment of pharmaceuticals requires the determination of their environmental exposure concentrations. Existing exposure modeling approaches are often computationally demanding, require extensive data collection and processing efforts, have a limited spatial resolution, and have undergone limited evaluation against monitoring data. Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit model calculating concentrations of active pharmaceutical ingredients (APIs) in surface waters across Europe at ∼1 km resolution. ePiE strikes a balance between generating data on exposure at high spatial resolution while having limited computational and data requirements. Comparison of model predictions with measured concentrations of a diverse set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around 95% were within an order of magnitude. Improved predictions were obtained for the river Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption data were available and the monitoring study design was coherent with the model outputs. Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin, gabapentin, and acetaminophen as priority when based on predicted exposure concentrations. After incorporation of toxic potency, this changed to desvenlafaxine, loratadine, and hydrocodone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.