Abstract
Warning systems with the ability to predict floods several days in advance have the potential to benefit tens of millions of people. Accordingly, large‐scale streamflow prediction systems such as the Advanced Hydrologic Prediction Service or the Global Flood Awareness System are limited to coarse resolutions. This article presents a method for routing global runoff ensemble forecasts and global historical runoff generated by the European Centre for Medium‐Range Weather Forecasts model using the Routing Application for Parallel computatIon of Discharge to produce high spatial resolution 15‐day stream forecasts, approximate recurrence intervals, and warning points at locations where streamflow is predicted to exceed the recurrence interval thresholds. The processing method involves distributing the computations using computer clusters to facilitate processing of large watersheds with high‐density stream networks. In addition, the Streamflow Prediction Tool web application was developed for visualizing analyzed results at both the regional level and at the reach level of high‐density stream networks. The application formed part of the base hydrologic forecasting service available to the National Flood Interoperability Experiment and can potentially transform the nation's forecast ability by incorporating ensemble predictions at the nearly 2.7 million reaches of the National Hydrography Plus Version 2 Dataset into the national forecasting system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.