Abstract

The IRF3 transcription factor is critical for the first line of defense against pathogens mainly through interferon β and antiviral gene expression. A detailed analysis of IRF3 activation is essential to understand how pathogens induce or evade the innate antiviral response. Distinct activated forms of IRF3 can be distinguished based on their phosphorylation and monomer vs dimer status. In vivo discrimination between the different activated species of IRF3 can be achieved through the separation of IRF3 phosphorylated forms based on their mobility shifts on SDS-PAGE. Additionally, the levels of IRF3 monomer and dimer can be monitored using non-denaturing electrophoresis. Here, we detail a procedure to reach the highest resolution to gain the most information regarding IRF3 activation status. This is achieved through the combination of a high resolution SDS-PAGE and a native-PAGE coupled to immunoblots using multiple total and phosphospecific antibodies. This experimental strategy constitutes an affordable and sensitive approach to acquire all the necessary information for a complete analysis of the phosphorylation-mediated activation of IRF3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.