Abstract

SummaryThe pathogenesis of malaria parasites depends on host erythrocyte modifications that are facilitated by parasite proteins exported to the host cytoplasm. These exported proteins form a trafficking complex in the host cytoplasm that transports virulence determinants to the erythrocyte surface; this complex is thus essential for malaria virulence. Here, we report a comprehensive interaction network map of this complex. We developed authentic, unbiased, highly sensitive proteomic approaches to determine the proteins that interact with a core component of the complex, SBP1 (skeleton-binding protein 1). SBP1 interactomes revealed numerous exported proteins and potential interactors associated with SBP1 intracellular trafficking. We identified several host-parasite protein interactions and linked the exported protein MAL8P1.4 to Plasmodium falciparum virulence in infected erythrocytes. Our study highlights the complicated interplay between parasite and host proteins in the host cytoplasm and provides an interaction dataset connecting dozens of exported proteins required for P. falciparum virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.