Abstract

Coal mines are globally an important source of methane and also one of the largest point sources of methane. We present a high-resolution 0.1° × 0.1° bottom-up gridded emission inventory for methane emissions from coal mines in India and Australia, which are among the top 5 coal producing countries in 2018. The aim is to reduce the uncertainty in local coal mine methane emissions and to improve the spatial localization to support monitoring and mitigation of these emissions. For India, we improve the spatial allocation of the emissions (CH4 emissions: 825 [min: 166 – max: 1484] Gg yr−1) by identifying the exact location of surface and underground coal mines and we use a Tier-2 Intergovernmental Panel on Climate Change (IPCC) methodology to estimate the emissions from each coal mine using country-specific emission factors. For Australia (CH4 emissions: 972 [min: 863 – max: 1081] Gg yr−1), we estimate the emission for each coal mine by distributing the state-level reported total emissions using proxies of coal production and the coal basin-specific gas content profile of underground mines. Comparison of our total coal mine methane emission from India with existing global inventories showed our estimates are about a factor 3 lower, but well within range of the national Indian estimate reported to United Nations Framework Convention on Climate Change. For both the countries, the new spatial distribution of the emissions show large difference from the current global inventories. Our improved emissions dataset will be useful for air quality or climate modeling and while assessing the satellite methane observations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call