Abstract

A new type of spectrometer for low energy charged particles is presented. It consists of an adiabatic magnetic collimation and two filters: an electrostatic retarding potential to set a lower limit (high pass) and a time-of-flight analysis to reject high energy charged particles (low pass). Both filters are only limited in their resolution by the efficiency of the adiabatic magnetic collimation. The proof of this principle is demonstrated by a pilot measurement on the K conversion line of 83mKr. Possible applications to pulsed and continuous electron sources are discussed with the emphasis on the investigation of the β spectrum of T 2 to deduce information on the mass of the electron antineutrino and possible anomalies in the β spectrum. In this context design parameters of a spectrometer with a resolving power of E/ ΔE=20 000 and a luminosity of A ΔΩ/4 π=4 cm 2 for 20 keV electrons are given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call