Abstract

To improve the spatial resolution of human event-related potentials, we developed a new high resolution EEG method based on the improved estimate of the realistic surface Laplacian (SL). The novelty of this method consisted in the computation of the local scalp resistance that was assumed to be inversely proportional to the local scalp thickness measured from magnetic resonance images of the subject's head. The local scalp thickness was then multiplied by the SL estimate of the potential over a realistic magnetic resonance-constructed model of the subject's scalp surface. The new method was applied on human movement-related and somatosensory-evoked potentials, the SL estimate at a constant scalp thickness being used as a reference. The locally-predicted scalp thickness was significantly ( P < 0.05) higher in the temporal areas (9.5 ± 2.6 mm) than in the parieto-occipital (6.6 ± 1.3 mm) and frontal (4.8 ± 1.1 mm) areas. Compared to the SL estimate at constant scalp thickness, the improved SL estimate enhanced the spatial detail of both movement-related and somatosensory-evoked potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.