Abstract
Land use change and the associated change in sediment runoff to the receiving environment is a topic of concern for estuarine and coastal governing agencies around the world. Fine sediments can enter the receiving environment and have a plethora of potential negative impacts (e.g., ecological, and recreational) and present no real opportunities or positive impacts. In the present study, a Delft3D numerical model is presented. The model has been calibrated considering water levels, currents, temperature, salinity, and Suspended Sediment Concentrations (SSC). Delft3D-Wave was also coupled to the hydrodynamic model to investigate the role of wave related fine sediment resuspension due to wave bed shear stresses. The extent of this model covered the Wairoa River and estuary, just south of Auckland, New Zealand. The motivation for this study was to produce a method that could link the upstream SSC contribution to the subsequent distribution in the receiving environment. From there it can readily be used as input to a regional scale model to investigate and understand the fate of sediments in the Hauraki Strait. As part of an ongoing research programme, the present study formed part of an extensive measurement campaign. Measurement instruments and results are presented alongside numerical model sensitivity analyses. The model performance is discussed, and the physical dynamics are described via extensive tables and summarising plots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.