Abstract

Magnetic pulse compression (MPC) systems are suitable for generating dielectric barrier discharges (DBDs) owing to their capability of producing high-amplitude, short pulse voltage waves. This paper proposes a high-frequency, bipolar magnetic compression system to study DBD plasma characteristics. First, the principle of bipolar MPC is explained [a bipolar MPC system comprises a full bridge inverter circuit, pulse transformer (PT), and magnetic switch (MS)]. Additionally, the design of the PT and MS is described. Then, the waveform of the resistive load is tested and compared with PSpice simulation results. It was found that the nanosecond pulse generator produces a pulse on a resistor with an amplitude of 0-13 kV, a rise time of approximately 100 ns, and a repetition frequency of 0 to several kHz. Finally, this paper studies the plasma characteristics under the application of a high-frequency bipolar pulse, and the charge-voltage Lissajous figure of the discharge waveform is analyzed. Combining discharge photographs and theoretical calculation results yields the relationship between the discharge characteristics and the frequency, which enriches the theoretical study of high-frequency bipolar discharges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call