Abstract

The field of molecular imaging aims to visualize and quantify (patho)physiological processes at the cellular and molecular level. Sensitive and site-targeted contrast agents are employed to visualize molecular constituents of processes of interest. The principal aim of this study was to develop a magnetic resonance imaging (MRI) detectable liposome with high relaxivity and stability. To this end, Gd(III)DOTA-DSPE was synthesized and incorporated in a liposomal formulation. The resulting liposomes were extensively characterized in vitro in terms of contrast agent efficiency and structural properties. The liposomes were shown to have a high longitudinal relaxivity, which is crucial for the detection of low concentration molecular markers in molecular imaging studies. We also demonstrated that Gd(III)DOTA-DSPE exhibits no detectable transmetallation upon incubation with Zn(II). This is important as it significantly contributes to the biocompatibility of the contrast agent. The present liposome preparation will serve as versatile and well characterized platform for molecular imaging and targeted drug delivery studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.