Abstract

We present a new approach to ligand exchange on lead sulfide (PbS) quantum dots (QDs) in which the QDs are reacted with preformed Pb cation-ligand exchange units designed to promote reactions that replace surface Pb and oleate groups on the as-grown QDs. This process introduces negligible surface defects as the high quantum efficiency (∼55%) of the as-grown QDs is maintained. Infrared spectroscopy and electron microscopy are used to confirm the replacement of ligands and time-resolved photoluminescence to demonstrate the expected inverse sixth power dependence of the nonradiative resonant energy transfer rate on inter-QD spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.