Abstract
The design and implementation of a high-precision VLSI winner-take-all (WTA) circuit that can be arranged to process 1024 inputs are presented. The cascade configuration can be used to significantly increase the competition resolution and maintain high-speed operation for a large-scale network. The total bias current increases in proportion to the number of circuit cells so that a nearly constant response time is achieved. A unique dynamic current steering method is used to ensure that only a single winner exits in the final output. Experimental results for a prototype chip fabricated in a 2- mu m CMOS technology show that a cell can be a winner if its input is larger than those of the other cells by 15 mV. The measured response time is around 50 ns at a 1-pF load capacitance. This analog winner-take-all circuit is a key module in the competitive layer of self-organizing neural networks.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.