Abstract

The effects of three well-known electrolyte additives, used singly or in combination, on LiCoO2/graphite pouch cells has been investigated using the ultra high precision charger (UHPC) at Dalhousie University, electrochemical impedance spectroscopy (EIS) and long term cycling Vinylene carbonate (VC), vinyl ethylene carbonate (VEC), and lithium bis(oxalato) borate (LiBOB) were chosen for study. The results show that combinations of electrolyte additives that act synergistically can be more effective than a single electrolyte additive. However, simply using 2% VC yielded cells very competitive in coulombic efficiency (CE), charge endpoint capacity slippage and charge transfer resistance (Rct). For cells with 1% LiBOB and VC (1, 2, 4 or 6%), adding VC above 2% does not increase the CE, but increases the electrode charge transfer impedances. Rct for cells containing 1% LiBOB and VEC (0.5, 1 or 4%) decreased after long term cycling (1800 h), compared to that tested after the UHPC cycling (500 h) indicating that VEC might be useful for the design of power cells. However, the opposite behaviour (increasing Rct with cycle number) was observed for the control cells or cells containing LiBOB and/or VC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.