Abstract
Falls can cause significant harm, and even death, to elderly individuals. Therefore, it is crucial to have a highly accurate fall detection model that can promptly detect and respond to changes in posture. The YOLOv8 model may not effectively address the challenges posed by deformation, different scale targets, and occlusion in complex scenes during human falls. This paper presented ESD-YOLO, a new high-precision fall detection model based on dynamic convolution that improves upon the YOLOv8 model. The C2f module in the backbone network was replaced with the C2Dv3 module to enhance the network’s ability to capture complex details and deformations. The Neck section used the DyHead block to unify multiple attentional operations, enhancing the detection accuracy of targets at different scales and improving performance in cases of occlusion. Additionally, the algorithm proposed in this paper utilized the loss function EASlideloss to increase the model’s focus on hard samples and solve the problem of sample imbalance. The experimental results demonstrated a 1.9% increase in precision, a 4.1% increase in recall, a 4.3% increase in mAP0.5, and a 2.8% increase in mAP0.5:0.95 compared to YOLOv8. Specifically, it has significantly improved the precision of human fall detection in complex scenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.