Abstract
The climactic eruption of Mount Mazama in Oregon, North America, resulted in the deposition of the most widespread Holocene tephra deposit in the conterminous United States and south-western Canada. The tephra forms an isochronous marker horizon for palaeoenvironmental, sedimentary and archaeological reconstructions, despite the current lack of a precise age estimate for the source eruption. Previous radiocarbon age estimates for the eruption have varied, and Greenland ice-core ages are in disagreement. For the Mazama tephra to be fully utilised in tephrochronology and palaeoenvironmental research, a refined (precise and accurate) age for the eruption is required. Here, we apply a meta-analysis of all previously published radiocarbon age estimations ( n = 81), and perform Bayesian statistical modelling to this data set, to provide a refined age of 7682–7584 cal. yr BP (95.4% probability range). Although the depositional histories of the published ages vary, this estimate is consistent with that estimated from the GISP2 ice-core of 7627 ± 150 yr BP (Zdanowicz et al., 1999).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.