Abstract

A very high power factor electronic ballast that uses a single switch in the power circuit is proposed in this paper for compact fluorescent lamps (CFLs). The proposed power circuit is designed by integrating a SEPIC power factor corrector with a novel single-switch current-fed resonant inverter. The advantage of this single-switch electronic ballast is that it greatly simplifies the gate-drive circuit design due to the elimination of isolation devices that are otherwise required in the conventional half-bridge totem pole configuration. This topology features a reduction of at least two switches in the power stage compared to conventional two-stage approach for high-power-factor electronic ballasts. In addition, the proposed circuit is also able to achieve close-to-unity power factor by operating the integrated SEPIC power factor corrector in discontinuous conduction mode. The conduction loss of the switch in the proposed circuit is also significantly reduced compared to the conventional class-E single-switch resonant inverter. Experimental results are provided to justify all the theoretical analysis and highlight the features of the proposed circuit on a 13-W CFL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.