Abstract

Aqueous organic flow batteries have attracted dramatic attention for stationary energy storage due to their resource sustainability and low cost. However, the current reported systems can normally be operated stably under a nitrogen or argon atmosphere due to their poor stability. Herein a stable air-insensitive biphenol derivative cathode, 3,3′,5,5′-tetramethylaminemethylene-4,4′-biphenol (TABP), with high solubility (>1.5 mol L−1) and redox potential (0.91 V vs. SHE) is designed and synthesized by a scalable one-step method. Paring with silicotungstic acid (SWO), an SWO/TABP flow battery shows a stable performance of zero capacity decay over 900 cycles under the air atmosphere. Further, an SWO/TABP flow battery manifests a high rate performance with an energy efficiency of 85% at a current density of 60 mA cm−2 and a very high volumetric capacity of more than 47 Ah L−1. This work provides a new and practical option for next-generation practical large-scale energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.