Abstract

This study proposes a new Pr0.25Nd0.25Ca0.5MnO3-δ (PNCM) cathode material for protonic ceramic fuel cells (PCFCs). As demonstrated by first-principles calculations, the Ca-doping strategy can promote oxygen vacancy formation and accelerate the oxygen reduction reaction (ORR) compared to the conventional Sr-doping method. Additional experiments reveal the doping of Ca can enhance the proton and oxygen diffusion abilities compared with the traditional Sr-doped material. Consequently, the PCFC with single-phase PNCM cathode produces a high peak power density of 1232 mW cm-2 at 700 °C, which is significantly greater than the cell with Sr-doped cathode, which only produces 749 mW cm-2 under the same testing conditions. The PNCM cathode inherits the excellent stability of manganate cathodes, allowing the fuel cell to exhibit good stability under operational conditions. PNCM is a new and promising cathode material for PCFCs due to its excellent fuel cell performance and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.