Abstract
A sulfonated polyimide, S-F-abSPI, with alkyl sulfonic acid side chains, and a polyphosphonitrile derivative, poly[4-methoxyphenoxy (4-fluorophenoxy) phosphazene] (PFMPP), were designed and synthesized. Composite modification of the S-F-abSPI membrane was carried out using PFMPP, resulting in the preparation of composite membranes with different composite ratios, which were then subjected to performance testing and characterization. Experimental results revealed a significant enhancement in the proton conductivity of the S-F-abSPI membrane, reaching 0.116 S cm-1, slightly higher than that of the N212 membrane. The S-F-abSPI/1% PFMPP composite membrane exhibited the optimal comprehensive performance, with a surface resistance as low as 0.54 Ω cm2, comparable to that of the N212 membrane. At a high current density of 200 mA cm-2 during charge-discharge, the composite membrane achieved a voltage efficiency (VE) of 83.12% and an energy efficiency (EE) of 81.95%. Cycling tests over 200 cycles demonstrated the composite membrane's excellent long-term cycling stability. The alkyl sulfonic acid side chains enhanced the proton conductivity of the membrane, while electrostatic potential distribution calculations indicated strong interactions between PFMPP and the base membrane, enhancing the membrane's mechanical strength, reducing vanadium ion permeability, and improving chemical stability and vanadium ion selectivity. This composite membrane holds promise for high-performance VRFB applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.