Abstract

Abstract Displacement laser interferometers and interferometric encoders currently are the dominating solutions to the displacement measurement applications which require measurement uncertainties in the order of a few nanometers over hundreds of millimeters of measurement range. But, in comparison with interferometric encoders, to achieve nanometer order or even lower measurement uncertainties, displacement laser interferometers require much stricter environmental control if not vacuum, which will increase their Total Cost of Ownership (TCO). Therefore interferometric encoders are getting more and more preferable. Furthermore, for some applications, the measurement of the out-of-plane displacement is required as well. Therefore, in this work, a one-dimensional interferometric encoder was built and investigated, a novel two-dimensional (one is in-plane, the other one is out-of-plane) interferometric encoder was devised and its principle was proven experimentally. For the one-dimensional encoder, a periodic nonlinearity of ±50 pm with HEIDENHAIN EIB 741 and a periodic nonlinearity of less than ±10 pm with a home built phase meter and off-line Heydemann correction were identified through a comparison measurement with a differential heterodyne interferometer. In addition, this one-dimensional encoder was identified to have a better measurement stability compared to the differential heterodyne interferometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call