Abstract
In this paper, a feedback neural network model is proposed to compute the solution of the mathematical programs with equilibrium constraints (MPEC). The MPEC problem is altered into an identical one-level non-smooth optimization problem, then a sequential dynamic scheme that progressively approximates the non-smooth problem is presented. Besides asymptotic stability, it is proven that the limit equilibrium point of the suggested dynamic model is a solution for the original MPEC problem. Numerical simulation of various types of MPEC problems shows the significance of the results. Moreover, the scheme is applied to compute the Stackelberg–Cournot–Nash equilibria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.