Abstract
In this research, a palladium nanocatalyst was synthesised over a multi-walled carbon nanotube (MWCNT) support and then applied for selective hydrogenation of acetylene in an ethylene-richflow stream. This material displayed a very promising selectivity toward ethylene production with increasing temperature, and also suppressed oligomer formation during acetylene hydrogenation. New operating conditions for selective hydrogenation of acetylene in an ethylene-richflow were introduced. This nanocatalyst gave a considerably higher yield, as high as 93%, than that previously obtained for ethylene production. It was postulated that the governing mechanism for acetylene hydrogenation over 0.5 wt.% Pd/MWCNT was hydrogen transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.