Abstract

Background and aimsIntensive care antibiotic treatment faces challenges due to substantial pharmacokinetic differences in critically ill patients. Individualized antibiotic dosing guided by therapeutic drug monitoring (TDM) is considered to minimize the risk of treatment failure and toxicity. This study aimed to develop a valid method for simultaneous LC-MS/MS quantification of 10 drugs frequently used in intensive care antibiotic therapy for which TDM-guided dosing is recommended: piperacillin, meropenem, flucloxacillin, cefuroxime, vancomycin, colistin A and B, linezolid, ciprofloxacin and tazobactam. Methods and ResultsThorough optimization of sample preparation and chromatography resulted in a fast and simple method based on protein precipitation of 50 µL plasma or serum and gradient elution using an Acquity UPLC HSS-T3 column. Electrospray ionization-triple quadrupole mass spectrometry in dynamic multiple reaction monitoring was used for quantification, covering the therapeutic range of each drug compound. Validation following EMA and FDA recommendations, including inter-platform validation and inter-laboratory comparison, demonstrated high accuracy, precision and robustness of the new method. The assay was successfully used to monitor plasma antibiotic levels of critically ill patients (n = 35). ConclusionThe established multiplex method covers major drug classes with documented dosing challenges, provides a reliable basis for the implementation of high-throughput TDM, and its application confirmed the clinical impact of TDM in a real-world setting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call