Abstract
We examine the problem of simulating single and multiphase flow in porous medium systems at the pore scale using the lattice Boltzmann (LB) method. The LB method is a powerful approach, but one which is also computationally demanding; the resolution needed to resolve fundamental phenomena at the pore scale leads to very large lattice sizes, and hence substantial computational and memory requirements that necessitate the use of massively parallel computing approaches. Common LB implementations for simulating flow in porous media store the full lattice, making parallelization straightforward but wasteful. We investigate a two-stage implementation consisting of a sparse domain decomposition stage and a simulation stage that avoids the need to store and operate on lattice points located within a solid phase. A set of five domain decomposition approaches are investigated for single and multiphase flow through both homogeneous and heterogeneous porous medium systems on different parallel computing platforms. An orthogonal recursive bisection method yields the best performance of the methods investigated, showing near linear scaling and substantially less storage and computational time than the traditional approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.