Abstract

In this paper, we propose an input access scheme for input-queued ATM multicast switches, achieving high system throughput, low packet delay and packet loss probability. Multicast and unicast packets of each input port are separately queued. Multicast queues take priority over the unicast queues, and both types of queues are fairly served in a cyclic-priority access discipline. In particular, each unicast queue is handled on a window-service basis, and each multicast packet is switched in a one-shot scheduling manner. To evaluate the performance of the access scheme, we propose an approximate analysis based on a simplified cyclic-priority model for anN×N finite-buffer multicast switch possessing Bernoulli multicast and unicast arrivals, with window-service (for unicasting) and one-shot scheduling (for multicasting) both taken into account. Finally, we show simulation results to demonstrate the accuracy of the approximate analysis and the superiority of the scheme over existing schemes with respect to normalized system throughput, mean packet delay, and packet loss probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call