Abstract

The ability to precisely estimate the void fraction of multiphase flow in a pipe is very important in the petroleum industry. In this paper, an approach based on our previous works is proposed for predicting the void fraction independent of flow regime and liquid phase density changes in gas–liquid two-phase flows. Implemented technique is a combination of dual modality densitometry and multi-beam gamma-ray attenuation techniques. The detection system is comprised of a single energy fan beam, two transmission detectors, and one scattering detector. In this work, artificial neural network (ANN) was also implemented to predict the void fraction percentage independent of the flow regime and liquid phase density changes. Registered counts in three detectors and void fraction percentage were utilized as the inputs and output of ANN, respectively. By applying the proposed methodology, the void fraction was estimated with a mean relative error of less than just 1.2480%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.